Technologischer Durchbruch für kostengünstige, organische LED-Paneele und flexible Solarzellen
Erfolgreicher Abschluss von EU Projekt TREASORES
Im November 2012 startete das EU Projekt TREASORES (Transparent Electrodes for Large Area Large Scale Production of Organic Optoelectronic Devices) mit dem Ziel, die Produktionskosten von organischen Bauteilen wie Solarzellen und LED Paneelen spürbar zu reduzieren. Das Projekt wurde mit 9 Millionen Euro von der Europäischen Union und weiteren 6 Millionen Euro durch Eigenmittel der Partner finanziert. Es erbrachte sieben Patente, ein Dutzend wissenschaftliche Publikationen sowie massgebliche Beiträge zu internationalen Organisationen für Normung.
Als wichtigstes Ergebnis hat das Projekt Produktionsprozesse für verschiedene Typen transparenter Elektroden und Barrierematerialien für die nächste Generation flexibler Optoelektronik entwickelt und in einem zweiten Schritt für die Industrieproduktion hochskaliert. Drei dieser Elektroden auf flexiblen Substraten – sie basieren entweder auf Kohlenstoffnanoröhrchen, Metallfasern oder dünnen Silberschichten – werden bereits kommerziell produziert oder sollen noch dieses Jahr auf den Markt kommen. Die nächste Generation von Lichtquellen und Solarzellen soll mittels Rolle-zu-Rolle-Fabrikation hergestellt werden, wofür sich die neuen Elektroden besonders gut eignen. Eine Rolle mit OLED- Lichtquellen und Projekt-Logo wurde durch einen solchen Rolle-zu-Rolle Prozess am Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl und Plasmatechnik FEP in Dresden auf einer dünnen Silberelektrode hergestellt, welche im Rahmen des Projekts von der Rowo Coating GmbH entwickelt wurde. Solche Prozesstechnologien werden in Zukunft die Preise für Lichtquellen und Solarzellen deutlich sinken lassen, benötigen jedoch flexible und transparente Elektroden und wasserdichte Barrieren, welche ebenfalls im Rahmen des TREASORES Projekts entwickelt wurden. Die Projektelektroden sind bereits jetzt ebenso leistungsfähig und transparent wie Elektroden der aktuellen Technologie (basierend auf Indium dotiertem Zinnoxid, ITO), teilweise sind sie diesen Elektroden sogar überlegen. Sie können jedoch kostengünstiger produziert werden und beruhen nicht auf dem Import von seltener werdendem Indium.
Tomasz Wanski vom Fraunhofer FEP bestätigt, dass mit den neuen Elektroden äußerst homogene Lichtquellen auch auf größeren Flächen mit einer Effizienz von 25 Lumen pro Watt erreicht wurden – ebenso gut wie äquivalente Bauteile der bisherigen OLED-Technologie, die mit einem langsameren Produktionsprozess auf einzelnen Folien hergestellt werden. Im Laufe des Projektes wurden am National Physical Laboratory in Grossbritannien auch neue Testmethoden für die Biegefestigkeit von Elektroden entwickelt – dieser Test könnte auf diesem Gebiet zu einer neuen Norm führen.
Ein weiterer Erfolg des Projektes war die Herstellung, das Testen und die Hochskalierung der Produktion von neuen, transparenten Barrierefolien – gemeint sind Kunststofffolien, welche verhindern, dass Sauerstoff und Wasserdampf in die organischen Bauteile eindringen und diese zerstören. Es gelang, effiziente und kostengünstige Barrieren zu produzieren, die voraussichtlich von der Schweizer Firma Amcor Flexibles Kreuzlingen weiterentwickelt und vermarktet werden können. Solche nicht permeable Barrieren sind essenziell, um die für einen kommerziellen Erfolg benötigte lange Lebensdauer organischer Solarzellen und Lichtquellen zu erreichen. Wie mit einer im Projekt durchgeführten Lebenszyklenanalyse (LCA) bestätigt wurde, sind Solarzellen nur dann kommerziell und ökologisch sinnvoll, wenn sowohl die Effizienz wie auch die Lebensdauer ausreichend hoch sind. Indem man die Produktion von Barrieren und Elektroden kombiniert, anstatt dafür zwei separate Kunststoffsubstrate zu verwenden, können die Produktionskosten weiter reduziert und die Bauteile dünner und flexibler gestaltet werden.
Die große Herausforderung des Projektes war, die Barriere- und Elektrodensubstrate extrem flach, glatt und sauber herzustellen. Optoelektronische Bauteile besitzen aktive Schichten von lediglich ein paar hundert Nanometern – weniger als 1 % des Durchmessers eines menschlichen Haares – und bereits kleine Oberflächendefekte oder unsichtbare Staubpartikel können die Bauteileffizienz erniedrigen oder zu inhomogener Leuchtfläche und kurzer Lebensdauer führen.
Das TREASORES Projekt vereinigte das Knowhow von neun Firmen und sechs Technologieinstituten aus fünf Ländern und wurde von Frank Nüesch von der Eidgenössischen Materialprüfungs-und Forschungsanstalt (Empa) geleitet. „Ich freue mich darauf, noch in diesem Jahr die ersten kommerziellen Produkte aus dem Projekt auf dem Markt zu sehen“, sagt Nüesch.
Michael Niggemann, CTO des Solarzellenherstellers Eight19 in Cambridge ist ebenfalls begeistert: „Das TREASORES Projekt war ein Erfolg für Eight19, da es wichtige Beiträge zur Senkung der Produktionskosten unserer Solarzellen lieferte. Wir haben damit einen entscheidenden Schritt hin zur Kommerzialisierung von organischen Solarzellen geschafft – basierend auf einer Technologie, die in Europa entwickelt wurde.“
Das Forschungsprojekt wurde finanziell durch das siebte Rahmenprogramm der Europäischen Union, Vertragsnummer 314068, unterstützt.
Partner im TREASORES Forschungsprojekt:
- Empa (Eidgenössische Materialprüfungs- und Forschungsanstalt), Schweiz
- Technische Universität Dresden, Deutschland
- Fraunhofer FEP, Fraunhofer ISC, Fraunhofer IVV und Fraunhofer ISE, Deutschland
- Universität Valencia, Spanien
- Aalto Universität, Finnland
- CIC Nanogune, Spanien
- NPL Management Ltd., Großbrittanien
- Osram GmbH, Deutschland
- Canatu Oy, Finnland
- Amanuensis GmbH, Schweiz
- Sefar AG, Schweiz
- Amcor Flexibles, Schweiz und Deutschland
- Rowo Coating GmbH, Deutschland
- Eight19 Ltd., Großbrittanien
- Quantis Sàrl, Schweiz
Eine flexible Lichtquelle aus organischen LED (OLED), die im Rahmen des TREASORES-Projekts entwickelt wurde. Ein Schlüsselbereich dieser Technik sind flexible Elektroden und luftundurchlässige Barriereschichten. Diese leuchtende Folie wurde am Fraunhofer FEP in Dresden in einem kostengünstigen Rolle-zu-Rolle-Prozess hergestellt.