Organische Dünnschichtsensoren für die Analyse von Lichtquellen und den Einsatz in der Fälschungssicherheit
In einer aktuellen Publikation des Fachjournals „Advanced Materials“ stellt ein Team aus Physikern und Chemikern der TU Dresden einen organsichen Dünnschichtsensor vor, der eine ganz neue Art der Wellenlängenidentifikation von Licht beschreibt und eine spektrale Auflösung unterhalb eines Nanometers erreicht. Als integrierte Bauteile könnten die Dünnschichtsensoren in Zukunft den Einsatz von externen Spektrometern überflüssig machen. Die neuartige Technologie wurde bereits zum Patent angemeldet.
Spektroskopie umfasst eine Gruppe von experimentellen Verfahren, die Strahlung nach einer bestimmten Eigenschaft, z.B. Wellenlänge oder Masse, zu zerlegen. Sie gilt als eine der wichtigsten Analysemethoden in Forschung und Industrie. Spektrometer können Farben (Wellenlängen) von Lichtquellen bestimmen und werden als Sensoren in verschiedenen Anwendungsgebieten wie Medizin, Technik, Lebensmittelindustrie und vielem mehr eingesetzt. Marktübliche Geräte sind in der Regel relativ groß und sehr teuer. Sie basieren zumeist auf dem Prinzip des Prismas oder Gitters: Licht wird gebrochen und die Wellenlänge entsprechend des Brechungswinkels zugeordnet.
Am Institut für Angewandte Physik (IAP) und dem Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) der TU Dresden werden seit Jahren solche Sensorikkomponenten auf Basis von organischen Halbleitern erforscht. Mit den Ausgründungen Senorics und PRUUVE wurden bereits zwei Technologien in Richtung Marktreife entwickelt. Nun haben Forschende des IAP in Kooperation mit dem Institut für Physikalische Chemie einen Dünnschichtsensor entwickelt, der eine ganz neue Art der Wellenlängenidentifikation von Licht beschreibt und dabei aufgrund seiner geringen Größe und Kosten klare Vorteile gegenüber den handelsüblichen Spektrometern aufweist.
Die Funktionsweise der neuartigen Sensoren gestaltet sich folgendermaßen: Licht unbekannter Wellenlänge regt leuchtende (lumineszente) Stoffe in einem haardünnen Film an. Der Film besteht aus einer Mischung von lang nachleuchtenden (phosphoreszierenden) und nur sehr kurz nachleuchtenden (fluoreszenten) Stoffen, die das zu untersuchende Licht unterschiedlich absorbieren. Über die Intensität des Nachleuchtens, kann auf die Wellenlänge des unbekannten Eingangslichts geschlossen werden.
Originalpublikation:
Anton Kirch, Toni Bärschneider, Tim Achenbach, Felix Fries, Max Gmelch, Robert Werberger, Chris Guhrenz, Aušra Tomkevičienė, Johannes Benduhn, Alexander Eychmüller, Karl Leo, and Sebastian Reineke,
“Accurate Wavelength Tracking by Exciton Spin Mixing”, Advanced Materials (2022)
DOI: https://doi.org/10.1002/adma.202205015
Kontakt:
Anton Kirch
Institut für Angewandte Physik
anton.kirch@tu-dresden.de
Prof. Sebastian Reineke
Institut für Angewandte Physik
Tel.: +49 351 463-38686
Sebastian.reineke@tu-dresden.de