Laser Technology for a Lighter Future Flying
CO2 Laser System Technology by Fraunhofer IWS Enables Efficient Joining of Large Volume Fiber Composite Aircraft Structures
May 28, 2024 – The Fraunhofer Institute for Material and Beam Technology IWS has achieved decisive progress towards new ecological aircraft construction concepts. Within the EU programm Clean Sky 2 in the project “Multifunctional Fuselage Demonstrator” (MFFD), a team of researchers in Dresden provided proof of concept for the chipless joining of carbon fiber-reinforced thermoplastic component structures. The automated process approach developed joined the upper and lower halves of the world’s largest CFRTP aircraft fuselage segment. In addition to saving on labor, for instance when drilling and riveting, the novel construction method and the CONTIjoin process enable massive reduction in weight, material and time. As a result, the production of future commercial aircraft should become faster, more eco-friendly and competitive. The researchers will present their results and the system technology at the International Aerospace Exhibition ILA 2024 in Berlin.
An international consortium led by AIRBUS is researching production technologies for the thermoplastic fuselage of tomorrow. In the “Large Passenger Aircraft” (LPA) framework program within the MFFD project, the team led by Dr. Maurice Langer, Group Manager Bonding and Fiber Composite Technology at Fraunhofer IWS, used a CO2 laser beam source to demonstrate the welding of long joining seams on large-volume thermoplastic aircraft fiber composite structures outside of an autoclave for the first time in the world. On the left side of the MFFD, the process approach developed at Fraunhofer IWS produced the final longitudinal seam joint between the upper and lower fuselage halves of an eight by four meter section of the aircraft fuselage segment made of “Carbon Fiber Reinforced Thermo-Plastics” (CFRTP) – in full scale. The so-called CONTIjoin process, a combination of CO2 laser technology and highly dynamic beam shaping, controlled the laser power in real time to keep the temperature in the joining zone constant. At the same time, it enabled the automated adjustment of the beam shape in the welding gap.
Clean Sky 2 and Clean Aviation Project “MFFD”
As part of the EU-funded “Large Passenger Aircraft” (“LPA”) project, the Fraunhofer-Gesellschaft in Stade, together with international project partners, has joined together a true-to-scale upper and lower shell of the “Multi Functional Fuselage Demonstrator” (MFFD) using automated positioning and joining processes. The welding of the longitudinal seams of the two eight-meter-long CFRP half-shells with a diameter of around four meters successfully completed the production of the world’s largest thermoplastic CFRP aircraft fuselage segment. For the first time, a full-size fuselage segment was made from thermoplastic CFRP materials in a research project in order to assess the feasibility as well as the ecological and economic advantages and disadvantages.